Search results for "Baire space"
showing 5 items of 5 documents
Set-Valued Generalizations of Baire′s Category Theorem
1995
Abstract We prove some generalizations of Baire′s category theorem for chains of iterates of multifunctions defined on Cech-complete spaces. In particular, we extend Lennard′s results stated for functions on complete metric spaces.
A property of connected Baire spaces
1997
Abstract We give a topological version of a classical result of F. Sunyer Balaguer's on a local characterization of real polynomials. This is done by studying a certain property on a class of connected Baire spaces, thus allowing us to obtain a local characterization of repeated integrals of analytic maps on Banach spaces.
Countable connected spaces and bunches of arcs in R3
2006
Abstract We investigate the images (also called quotients) of countable connected bunches of arcs in R 3 , obtained by shrinking the arcs to points (see Section 2 for definitions of new terms). First, we give an intrinsic description of such images among T 1 -spaces: they are precisely countable and weakly first countable spaces. Moreover, an image is first countable if and only if it can be represented as a quotient of another bunch with its projection hereditarily quotient (Theorem 2.7). Applying this result we see, for instance, that two classical countable connected T 2 -spaces—the Bing space [R.H. Bing, A connected countable Hausdorff space, Proc. Amer. Math. Soc. 4 (1953) 474], and th…
Covering by discrete and closed discrete sets.
2008
Say that a cardinal number $\kappa$ is \emph{small} relative to the space $X$ if $\kappa <\Delta(X)$, where $\Delta(X)$ is the least cardinality of a non-empty open set in $X$. We prove that no Baire metric space can be covered by a small number of discrete sets, and give some generalizations. We show a ZFC example of a regular Baire $\sigma$-space and a consistent example of a normal Baire Moore space which can be covered by a small number of discrete sets. We finish with some remarks on linearly ordered spaces.
P-spaces and the Volterra property
2012
We study the relationship between generalizations of $P$-spaces and Volterra (weakly Volterra) spaces, that is, spaces where every two dense $G_\delta$ have dense (non-empty) intersection. In particular, we prove that every dense and every open, but not every closed subspace of an almost $P$-space is Volterra and that there are Tychonoff non-weakly Volterra weak $P$-spaces. These results should be compared with the fact that every $P$-space is hereditarily Volterra. As a byproduct we obtain an example of a hereditarily Volterra space and a hereditarily Baire space whose product is not weakly Volterra. We also show an example of a Hausdorff space which contains a non-weakly Volterra subspace…